Poisson integrals associated to Dunkl operators for dihedral groups
نویسندگان
چکیده
منابع مشابه
Radial Dunkl Processes Associated with Dihedral Systems
We give some interest in radial Dunkl processes associated with dihedral systems. We write down the semi group density and as a by-product the generalized Bessel function and the W -invariant generalized Hermite polynomials. Then, a skew product decomposition, involving only independent Bessel processes, is given and the tail distribution of the first hitting time of boundary of the Weyl chambe...
متن کاملfixed point property for banach algebras associated to locally compact groups
در این پایان نامه به بررسی خاصیت نقطه ثابت و خاصیت نقطه ثابت برای نیم گروههای برگشت پذیر چپ روی بعضی جبرهای باناخ از جمله جبر فوریه و جبر فوریه استیلتیس پرداخته شده است. برای مثال بیان شده است که اگر گروه یک گروه فشرده موضعی با همسایگی فشرده برای عنصر همانی که تحت درونریختی ها پایاست باشد آنگاه جبر فوریه و جبر فوریه استیلتیس دارای خاصیت نقطه ثابت برای نیم گروه های برگشت پذیر چپ است اگر و تنها ا...
15 صفحه اولPolynomials Associated with Dihedral Groups
Abstract. There is a commutative algebra of differential-difference operators, with two parameters, associated to any dihedral group with an even number of reflections. The intertwining operator relates this algebra to the algebra of partial derivatives. This paper presents an explicit form of the action of the intertwining operator on polynomials by use of harmonic and Jacobi polynomials. The ...
متن کاملDunkl Operators and Canonical Invariants of Reflection Groups
Using Dunkl operators, we introduce a continuous family of canonical invariants of finite reflection groups. We verify that the elementary canonical invariants of the symmetric group are deformations of the elementary symmetric polynomials. We also compute the canonical invariants for all dihedral groups as certain hypergeometric functions.
متن کاملCumulant operators for Lie-Wiener-Itô-Poisson stochastic integrals
The classical combinatorial relations between moments and cumulants of random variables are generalized into covariance-moment identities for stochastic integrals and divergence operators. This approach is based on cumulant operators defined by the Malliavin calculus in a general framework that includes Itô-Wiener and Poisson stochastic integrals as well as the Lie-Wiener path space. In particu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2004
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-04-07703-2